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CECAM-Workshop on Kinetic Models for Cluster 
Formation: Orsay, September 17-28, 1984 

R. Jullien, 1 M. Kolb, ~ H. Herrmann, 2 and J. Vannimenus 3 

We present the abstracts of the talks given at the workshop on kinetic 
models for cluster formation held at Orsay. 

The field of cluster growth and aggregation phenomena has been 
rapidly expanding in the last few years. Since the introduction of the first 
growth model for diffusion-limited aggregation (in which Brownian par- 
ticles stick one by one on a single growing cluster), many other models 
have been introduced and there have been systematic numerical 
investigations of the fractal properties of the resulting clusters. In parallel a 
growing body of experiments has been investigated and compared with 
theory. Still the field is a young one and rather phenomenological. The first 
thrust went into devising as many models as there are different experimen- 
tal situations, with the result that by now large portions of the real axis are 
paved with fractal dimensions (when allowing for error bars). A good over- 
view of the status of the field, before the workshop, can be found in the 
proceedings of the conference on kinetics of aggregation and gelation, held 
in Athens, Georgia in April 1984 (these proceedings have been edited by F. 
Family and D. L. Landau and published by North-Holland). In the mean- 
time much progress was made which motivated us to organize a workshop 
on the subject. 

This workshop was held in Orsay from the 17th to the 28th of Septem- 
ber. It was sponsored by the CECAM (Centre Europ6en de Calcul Atomi- 
que et Mol6culaire, B~,t. 506, Orsay, France). The aim of this meeting was 
to give ample time and opportunity for consolidating the different 
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approaches, experiments, and theories, and to try to develop a more 
systematic way to describe aggregation phenomena. 

The talks, usually in the morning, were followed by round tables and 
informal discussions in the afternoons. The topics covered included direct 
experimental observations of growth rocesses on a microscopic as well as 
on a macroscopic scale and adressed the question "how can one best 
extract the fractal properties?" There were theoretical considerations on the 
role of the surface of growing aggregates, the influence of fluctuations and 
randomness, as well as general self-similarity and universality properties. 
While the bulk of the models proposed still rely on numerical simulations, 
there are a few exact results in some special cases and some encouraging 
attempts at field theoretic formulations. We now summarize the talks of the 
workshop where the names in parentheses make reference to the speaker. 
The corresponding abstracts are given later on. 

Many interesting experiments were presented at this workshop. Some 
of them can be accounted for by the particle-cluster aggregation model, as 
originally proposed. They include dielectric breakdown (L. Pietronero) and 
copper electrodeposit (R. Brady). The mechanism of cluster-cluster 
aggregation, either kinetically or chemically controled, has been realized 
experimentally, and both static and dynamic properties were determined 
(D. Weitz, Z. Djordjevic). For various macroscopic model systems, the 
geometrical structure of growing clusters were determined: aggregation of 
latex spheres (P. Richetti) wax balls (C. Allain, R. Blanc), filtration 
experiments (D. Houi), and flow in a viscous medium (J. Nittmann). The 
question of how to analyze the experimental data was adressed by studying 
the optical Fourier transform of fractals (M. Clo~tre). 

On the theoretical side, let us first mention the progress made in 
understanding the general properties of fractal structure in growth. In 
addition to the fractal dimension several other exponents have been defined 
and useful relations between them could be established (H. E. Stanley). The 
influence of randomness (T. Witten) and the nature of the interface (L. 
Sander, B. Sapoval) were thoroughly discussed. Questions of universality 
and self-similarity have been investigated by the renormalization group (M. 
Kolb). Elastic (H. Herrmann) and electrical (P. Rammal) properties of 
fractal structures were also considered. Exact results for aggregation are 
limited to trees, where the concepts can be illustrated quite clearly (V. 
Hakim, J. Vannimenus). 

Much theoretical effort has been made to refine existing models and to 
evaluate more detailed properties. The so-called ballistic aggregation 
models have been investigated numerically and qualitatively (L. Sander). 
Kinetic gelation has been quantitatively compared with equilibrium 
gelation (D. Landau). Size distribution of clusters in cluster-cluster 
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aggregation has been investigated numerically in great detail (P. Meakin). 
Moreover, the cluster-cluster aggregation model has been extended to the 
case of two compounds (Z. Djordjevic, P. Meakin) and to the limit of a 
vanishing sticking probability (R. Ball, R. Jullien) with some successful 
agreement with experiments. The different role played by particle-cluster 
and cluster-cluster aggregations has been elucidated (R. Ball, R. Botet). A 
number of variants of kinetically growing self-avoiding walks have been 
studied, mainly to test which aspects are relevant for changing the fractality 
(A. Coniglio, J. Lyklema) and to try to make a field theory for growth 
processes (L. Peliti). It was also shown that the models used for growth 
processes have other interesting applications, especially in epidemiology 
and social behavior (P. Grassberger). 

The kinetic approach to aggregation provides a useful alternative for 
studying growth problems. Based on the Smoluchowski equation, this 
analytical approach helps to classify the different scaling regimes and 
provides some exact answers for specific growth models (P. van Dongen, 
M. Ernst, F. Leyvraz, E. Hendriks). 

Below, we give a list of the participants with their addresses and the 
abstracts of the talks (alphabetically). References for the talks are given at 
the end. 
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A B S T R A C T  OF T H E  T A L K S  

These are given in alphabetical order of the speakers. The speakers are 
underlined. 

C. ALLAIN, R. BLANC, C. CAMOIN, and E. GUYON, 
Macroscopic aggregation experiments: The formation of clusters in systems 
of particles is a very common process involved for instance in the floc, 
culation of colloids, coagulation of aerosols or in radicular chemical reac- 
tions. In this report, we present two sets of analog simulations of two- 
dimensional clusters which take into accoount physical processes not easily 
described by numerical works. 

In a first experiment, (1) we have studied the growth nine-dimensional 
clusters of l-ram diameter spheres floating on a surface of water. Because of 
the attractive capillary forces between these spheres, when two balls collide, 
they stick together permanently. At the beginning of the simulation, the 
balls are distributed randomly on the surface. During the experiment, their 
motion is due to random hydrodynamic movements of the surface, the 
Brownian effects being negligible. The existence of a critical surface concen- 
tration for the appearance of a cluster extending from one edge of the Con- 
tainer to the opposite one has been proved. For this concentration (0.195), 
the clusters exhibit self-similar properties with a fractal dimension equal to 
1.64. It is worth noting that this value is larger those obtained in numerical 
simulations. This can be related to intracluster aggregation processes and 
to hydrodynamic interactions which have not been taken into account in 
the numerical simulations. 

In a second experiment, ~2/the suspension of spheres is submitted to a 
shear flow. There is a competition between hydrodynamic forces which 
bring the particles together and separate then and the capillary forces 
which tend to aggregate them. Different clustering behaviors have been 
observed depending on the relative importance of these two forces. The 
amplitude of the capillary forces can be varied by changing the thickness d 
of a layer of oil having the same density as the spheres. If d is equal to the 
diameter of the spheres, no attraction is observed and hydrodynamic 
clusters of finite lifetime are formed. (3~ In the limit of zero shear rate.and 
low capillary forces, results are identical to those of the first experiment. In 
intermediate situations, compact clusters are formed. 

R. BOTET, R. JULLIEN, M. KOLB, Connection between par- 
ticle-cluster and cluster-cluster aggregation: An extension of the 
hierarchical model of clustering of clusters (4~ is introduced to allow direct 
numerical simulations of kinetic aggregation with any sort of kinetic coef- 
ficients K w. Studying the example Kij---(/j)~ we show (5) that the DLA 
model is recovered when there is gelation (co> 1/2). When there is no 
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gelation (co< 1/2), we find numerically clusters with the typical fracta! 
dimensionality of the clustering of clusters process. Nevertneless, the case 
where 0 < co < 1/2 is not quite clear since the analytical derivation of the 
man field value of the fractal dimensionality of the clusters above the upper 
critical dimension (6'7) yields to continuously varying exponent. (8) The use of 
other sorts of parameters to distinguish between the different classes of 
models is pointed out. 

R. M. BRADY and R. C. BALL, Fractal growth of copper elec- 
trodeposits: Black dendritic growths of copper were electrodeposited onto 
an initially pointlike cathode. The electrolytic solution contained Cu 2+ 
ions, an excess of Na § and SO 2- ions to screen out any electric fields, and 
an inert viscosity enhancer to prevent stirring of the solution. It was found 
that the reaction rate was limited by diffusion of copper ions. 

As the deposit grew, its mass M could be monitored by measuring the 
total charge transferred, and its average radius R could be found since it 
was proportional to the instantaneous current. Fractal behavior was obser- 
ved, MooR ~), with D=2.43+0 .03 ,  in good agreement with computer 
simulations of diffusion-limited aggregation. 

The potential for further work based on these experiments will be dis- 
cussed. 

C. ALLAIN, M. CLOITRE Optical Fourier transforms of frac- 
tals: We describe how to realize Fourier's transforms of fractals, in order 
to caracterize clusters which are obtained in a great number of aggregation 
processes. OFT is based on the capacity of a convergent lens to realize a 
Fourier's transform. This analogic technique is extremely convenient com- 
pared to other methods which are usually employed to study fractals (for 
instance, correlations calculi, applications of the mass-radius relation). 

Here, we restrict ourselves to the case of two-dimensional deterministic 
fractals, such as Cantor's sets and Serpinski's carpets. The fractal objects 
that we are studying are first calculated on a microcomputer and drawn by 
means of a graphics plotter. Then, we take photographs of these drawings, 
using 1 24 x 36-mm-high resolution film. Finally, the so-obtained objects 
(OB) are placed in an optical Fourier's transform arrangement and we 
study the repartition of their spatial frequencies in the reciprocal Fourier 
space. 

Two sorts of information are available from these Fourier's trans- 
forms, since we observe (1) intense quasiperiodic spots whose repartition in 
the Fourier place exhibits the same symmetry elements as OB, and (2) a 
continuous, "fractal," frequency spectrum which is due to the fractal nature 
o OB. Moreover, in the spcial cases of Cantor's sets and Serpinski, carpets, 
the Fourier transforms can be calculated analytically and compared to the 
optically obtained spectra. In view of this, we show how to determine 
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directly on the spatial spectrum of OB the Hausdorffs dimension and the 
smaller and larger scales of OB. 

Finally, from this study, we can discuss precisely the application of 
O F T  as an image processing system, to analyze clusters, aggregates, which 
are observed in a lot of experimental investigations. 

A. CONIGLIO,  Kinetic walk models and their relevance to polymers 
and gels: Recently introduced kinetic walk models are reviewed. Their 
relevance is shown to describe (i) the irreversible growth of a linear 
polymer, (ii) the coil globule transition which occurs at the 0 temperature, 
and (iii) the structure of a gel. 

G. DIETLER,  Experiments on blood coagulation: The aggregation of 
fibrin induced by the enzyme thrombin was investigated by combining 
static and dynamic light scattering with measurements of the release of the 
fibrinopeptides A. 

We present experiments which show that the reaction coordinate is the 
number of reactive binding sites per monomer initially in solution. Since 
the cluster size distribution is in equilibrium at every time, the aggregation 
is controlled by the action of the enzyme thrombin and the kinetic of 
aggregation reduces to the kinetic of the enzyme action. 

These results are valid only for concentrated solutions (fibrinogen con- 
centration ,,~ 2 mg/ml), where the mean distance between two monomers is 
comparable to the dimension of the monomers and the monomers do not 
need to diffuse in order to meet another monomer to form a bond. 

Z. B. DJORDJEVIC,  Scaling picture of polymerization kinetics: The 
kinetics of polymerization in dilute mixtures is monitored both by 
measurements of the intensity of the light scattered in the forward direc- 
tion, which provides the information on the second moment of the cluster 
size distribution, as well as by the infrared spectroscopy, which gives the 
mean number of chemical bonds. It is found that both the intensity of the 
scattered light and the intensity of the monitored absorption lines grow as 
power laws of time. The former with an exponent Y2 equal to 2.6 -t- 0.1 and 
the later with Yl ~0.8 _% 0.1. These results can be explained by the scaling 
picture of the polymerization kinetics which predicts that the mean number 
of clusters with b- chemical bonds scales as rib(t)= b-~  z) where t is 
the reaction time and 0 and z are two exponents related to measured 
exponents Y2 and yl .  The corresponding values are found to be 0 ~ 1.6 _+ 0.1 
and z ~  1.9 +_0.2. Also, these exponents are expressed as functions of the 
fractal dimension of the polymers D and the diffusion constant exponent ~. 
The values of the latter are deduced to be D = 1 . 8 4 + 0 . 1  and 
c~ = -0.47 ___ 0.1. 

Z. B. DJORDJEVIC and P. MEAKIN,  Gelation in A2+Bu 
systems: Kinetics of aggregation and gelation as well as structure of 
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polymers created in the mixtures of two types of polyfunctional monomers 
are investigated. We have developed a mean field kinetic theory for these 
processes and performed computer simulations in both two and three 
dimensions. It is discovered that gelation occurs only for the certain, 
limited, range of the values of the reltive concentration of two components. 
Outside, of this range polymerization results only in finite clusters. 
Apparent fractal dimension of the aggregates appears to be dependent on 
the composition of the chemical mixture. The same is true for the exponent 
z characterizing time evolution of the distribution function n( t )=  
S-~ 

G. J. van DONGEN and H. ERNST, Asymptotic solutions of the 
coagulation equation: The cluster size distribution ek(t) in a system of 
reacting clusters, A i + A j ~ A i + j ,  is studied using Smoluchowski's 
coagulation equation, where K(i,j) are the coagulation coefficients. We 
study the class of homogeneous kernels K(i,j), characterized by the 
exponents 2,/~ with 2co = 2 +/~: 

K(si, sj) = s2~'K(i, j) (1) 

K(i,j)~_j ~ ( j ~  oo, /fixed) 

The reactivity of large clusters should not increase faster than their size; 
thus co ~< 1, )~ ~< 1 (no restrictions on ~t). 

The short-time behavior (tJ, O) of ck(t) for initially monodisperse 
systems is described by ck(t)~--akt k-l ,  where the positive numbers ak 
satisfy al = 1 and/9) 

( k - 1 ) a k = ( 1 / 2 ) ~ K ( i , j ) a f l j  ( i + j = k )  (2) 

The ansatz ak~-AK-~ -k (k--, av) yields self-consistently 0=2co for all 
2 < 1. (1~ On the singular line 2 = 1 the 0 exponent (which is not loner uni- 
quely determined by 2 and #) can be solved from a transcendental equation 
involving K(i, j) explicitly. The solution may assume any value 0E (/~, oo), 
e.g., 0 =  ( 2 + a + # ) / 2  for K(i,j)= (iuj~+j~7)(i+j) 1+~ with/~<~.  Both A 
(and even its sign) as well as R are only known for a few solvable models, 
e.g., K(i, j )= (0") ~ (i +j)l ~ yields a k ~_ k -~ ek/x/-~ with 0 =/~ + 3/2. The 0 
exponent describes the size distribution ce ~-k ~ for "lattice animals" or 
branched polymers a finite time before t~ [ ( tc< m in gelling systems 
(co > 1/2), and tc = oo in nongelling systems (co ~< 1/2)]. A possible method 
to obtain the long-time (t --* oo) or critical (t ~ to) behavior of ck is to make 
the ansatz that vk(t)=ck(t)/Cl(t) approaches a positive number be as 
t --. 0% yielding (11~ 

1 ~ K(i,j)bibj (3) bej=~ [K(k , j ) -K(1 ,  j )]bj=~ ~+j=k 
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For gelling systems Eq.(3) applies also to the spcial postgel ( t> tc )  
solution, ck(t)=bk/[1 +fl ( t - - tc ) ] .  O2) Simple kernels are (zj) ~ and i~+j ~. 
We look for solutions of the form bk ~- B k - ~  (k ~ ~ ), and self-consistency 
arguments yield for homogeneous kernels with # > 0: v = 1 + 2co (co < 1) ~13) 
and ~ = co + 3/2 (1/2 < co < 1). On the singular line/t = 0, the r value is no 
longer uniquely determined by co=,~/2. For (0<)~< 1, # = 0 )  z can be 
solved from a transvental equation involving K(i, j). Possible solutions lie 
in the interval (1, 1 + 2). 

An alternative method for obtaining asymptotic properties of ck(t ) is 
via similarity solutions of Smoluchowski's equation, the so-called self- 
preserving spectra. Here we consider the region 2 < 1. For nongelling 
(co= 1/2) systems ck(t)= g2(~(kg) with x=kg( t )  kept fixed as k, t ~  ~ ,  
where g( t )~t  1/~ with a = 2 c o -  1. For gelling (on> 1/2) systems, 
ck(t)~-g~o6(kg) with x=kg( t )  kept fixed k ~  and t'[tc, where g(t)~ 
( to- t )  ~/~ with a = co -  1/2. The behavior of the scaling function as x+0 is 
(J(x)~x-2~ e x p ( - x  ~) if #<O, and cb(x)~x ~ with ~= l + 2~o if #>O and 
co < 1/2; z = co + 3/2 if kl > 0 and 1/2 < co < 1. In the ()~,/~) region with 2 < 1 
one has O6(x)~x-2~exp(-x)  as x ~  ~ .  

One could try, e.g., for nongelling systems, to calculate ck(t) as t ~ 
at fixed k, or k ~  ~ at fixed t from the similarity form c~(t)= 
gZ(t) (9(kg(t)). This yields 0 = 2co for all 2 < 1, in agreement with the recur- 
sion (2). The long-time behavior of ck(t) at fixed k for nongelling systems 
(co< 1/2) corresponds to the small-x behavior of ~b(x) and yields 
ck(t)~t ~bk with 7=  +1 for ( # > 0 ,  2 < 1 ) ,  and ? = ( 2 - v ) / ( 1 - 2 )  for 
(/~ = 0, 0 < 2 < 1). In the latter case (# = 0) the 7 and ~ exponent depend on 
the detailed form of K(i, j). 

It appears also possible to construct fragmentation kernels F(i, j), 
appropriate to K(i, j).r Fragmentation processes do not affect the short- 
time behavior; for co > 1/2 and sufficiently large fragmentation, gelation is 
suppressed; for co<1/2 fragmentation processes prevent ck(t) from 
reaching its self-preserving form. 

P. GRASSBERGER, Cluster growth in social phenomena and 
epidemics: I shall review the relation between two models of epidemics 
and directed (resp. undirected) percolation. Also, I shall review the connec- 
tion between coalescing random walks and public opinion formation. After 
that, ! shall discuss a field theoretic formulation which should, e.g., enable 
one to compute the e expansion of the "intrinsic spreading dimension" in 
percolation. 

Finally, I shall discuss modifications suggested in the literature on 
epidemics, and ask how they change critical behavior. Some lead to various 
interacting Levy flights. 

V. HAKIM, B. NICKEL,  J. VANNIMENUS, Diffusion limited 
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aggregation on the Cayley tree: We study the diffusion-controlled process 
of cluster growth, introduced by Witten and Sander, on a Cayley tree. We 
show that it is then equivalent to the Eden model where growth occurs at 
any boundary site with equal probability. The mean level number and the 
square gyration radius of an N-particle aggregate both increase as 
[K/(K-1)]  In N on a tree of branching ratio K. The case of biased dif- 
fusion is studied numerically: an attractive bias does not change the 
logarithmic behavior of the size, but a repulsive bias leads to a different 
behavior, presumably with a mean level number of order N. 

E. M. HENDRIKS, Cluster size distributions in equilibrium: E- 
quilibrium size distributions for finite system containing M monomers in a 
volume V undergoing coagulation (polymerization)/fragmentation, are 
determined for coagulation rate Ko and fragmentation rate Fo, 
corresponding to the process Ai+Aj-% Ai+j (here Ak denotes a cluster 
containing k monomeric units). It is shown that microscopic detailed 
balance implies FJK~ = 2 aiaj/a~+j, where 2 and e~ are arbitrary. The mean 
and most probable size distriution ck=;t p take -~* coincide in the ther- 
modynamic limit M, V~ov ,  p = M / V  fixed. If ak~e~ckk-6 (k--*oe), 
2 < 6 < 3, then the theory predicts a (sol-gel) phase transition at a well- 
defined value of q = 2p -~, with critical exponents z = c5 and a = 6 -  2. The 
gel fraction exponent fl assumes its classical value unity, probably due to 
the neglect of spatial fluctuations. Finally it is indicated how the theory can 
in principle be extended to account for isomerism and cyclization. 

H. J. HERRMANN, Elasticity of random media: There is not one 
single theory for the elasticity of a random mdium. The recent 
understanding in this complex field are reported. Particular emphasis is 
made on the geometrical character of the elastical part of a network. The 
backbone and the elastic backbone of percolation cluster are investigated 
numerically. Their unusual behavior explains the special features of some 
models for elasticity. The growth model of kinetic gelation has a con- 
siderably larger fractal dimension of the backbone than percolation. Thus 
one expects different elastic and other dynamic exponents for kinetic 
gelation than those usually calculated for percolation. 

D. HOUI and M. LENORMAND, Particle deposit during 
.filtration: Cake filtration is the continuous accumulation of solid particles 
at the surface of a filter medium. 

The growth and properties of this deposition are studied through 
experimental and computer simulations with specific rules which take into 
account physical mechanisms. 

The superposition of a ballistic displacement, due to the fluid flow and 
a diffusive motion (Brownian motion) is described by a Peclet number. 

Simulations have been carried out to investigate the crossover of r.m.s. 
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thickness exponent e between ballistic ( e = l )  and diffusive (e=l .3)  
deposition. 

R. JULLIEN and M. KOLB, Chemically limited cluster-cluster 
aggregation: The chemically limited cluster-cluster aggregation model is 
defined as a limiting model of diffusion-limited aggregation when the stick- 
ing probability becomes infinitesimally small. This model can also be 
viewed as a diffusive model in which the fractal dimension S w of the relative 
trajectory of the clusters tends to zero. Numerical investigations have been 
done in d=  2, 3, 4 on a hierarchical version of the model. (15) The fractal 
dimension of the clusters, D, as well as the exponent showing how the 
number of active sites N A increases with the total number of particles N in 
a cluster ( N A ~ N  ~) have been determined. Then, the crossover between 
Brownian cluster-cluster aggregation and chemically limited aggregation, 
when varying the sticking probability has been numerically investigated in 
a b o x .  (16) In three dimensions the fractal dimension increases from D ~ 1.78 
(diffusive) to D~2.00 (chemically limited) in good agreement with the 
experiments of Weitz. 

M. KOLB, Renormalization group for aggregation: A general renor- 
malization group transformation (RG) for the static as well as the kinetic 
properties of aggregates is formulated and applied to several growth 
models: particle aggregation, cluster aggregation, and growth percolation. 
The transformation is implemented using the Monte Carlo renormalization 
in real space and the RG flow is monitored utilizing several short-range 
static and dynamic correlations. Crossover behavior can be observed and 
critical exponents can be evaluated this way. 

D. P. LANDAU, Growth models for addition polymerization: Growth 
models for addition polymerization which explicitly include kinetics have 
recently been proposed and explored. Extensive computer simulation data 
now exist for lattice models in two and three dimensions for which 
polymerization occurs primarily through radical initiated growth. Results 
for bulk properties have been obtained in the vicinity of the gel sol trans- 
ition for a wide range of lattice sizes and initiator site concentrations. We 
shall review recent work on these models and compare and contrast the 
results with those for random percolation and Flory-Stockmayer theory. 

F. LEYVRAZ, Rate equation and aggregation process: An 
aggregation process can be described by the scheme 

AJ + Ak Rj~ Aj+k 

where Aj is an aggregate of size j and Rjk are suitably chosen rate con- 
stants. This leads to rate equations for the concentrations cj of Aj as a 
function of time. It is found that such equations lead to a scaling behavior 
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of the type observed in actual computer simulations. Some variations on 
that model--involving, e.g., time-dependent reaction rates--can also be dis- 
cussed. For a wide class of such models the different critical exponents 
involved can be evaluated exactly. 

J. W. LYKLEMA and K. KREMER, Irreversible self-avoiding 
walks: We discuss two new self-avoiding walks, which possess the 
property of irreversibility. That is, the product of the one-step probabilities 
is different in the two directions along the chain. This is achieved by model- 
ing the transition probabilities in such a way that the local environment is 
checked for the presence of earlier visited sites more extensively than for 
the normal self-avoiding walk (S. A. W.). 

The first walk (growing S. A. W.-IGSAW) manages to avoid cages 
and therefore lives forever. We propose to study these walks to describe 
growth processes of linear polymers in a surrounding where it grows faster 
than that it can relax to equilibrium (S. A. W.). 

We have studied these walks by using different extrapolation methods 
of enumeration results and extensive M. C. calculations in two and three 
dimensions. The values of the critical exponent v and 7 of the IGSAW differ 
considerably from the usual SAW. In two dimensions these values for the 
GSAW coincide with the SAW values, whereas in three dimensions this is 
not clear yet. 

Paul MEAKIN, The diffusion-limited growth model: its application to 
biological growth processes and material breakdown: The diffusion-limited 
growth model is a stochastic growth model in which the probability of 
growth at an unoccupied surface site is a function of the local concen- 
tration (C) of some diffusing substance at that site. In the case where the 
growth itself is a perfect absorber of the diffusing substance which is sup- 
plied from a distant source, the diffusion-limited growth model becomes 
equivalent to the dielectric breakdown model of Niemeyer et aL (17) Under 
these conditions, for the case where the growth probability (P) is related to 
C by P ~  C ~ the model generates structures with fractal dimensionalities of 
about 1.9, 1.7, and 1.4 for e =-0.5, 1.0, and 2.0, respectively. Simulations 
have been carried out with a variety of boundary conditions and growth 
probability functions P(C) to represent the behavior of biological, 
chemical, and physical systems. 

J. NITTMANN, A diffusion-limited aggregation model for the viscous 
finger instability: The interface between a less viscous fluid displacing a 
more viscous fluid in a parallel plate flow or in a porous medium is 
unstable. Instead of a well-defined interface between the two fluids, one 
observes that the less viscous fluid "tunnels" through the more viscous 
fluid. A system of long and narrow fingers of the less viscous fluid develops 
reaching far into the more viscous fluid. Preliminary experimental 

822/39/1-2-17 



254 Jullien, Kolb, Herrmann, and Vannimenus 

investigations indicate that these flow patterns are fractals associated with 
a Hausdorff dimension. We discuss the application of diffusion-limited 
aggregation-type models to present the instability patterns. 

L. PELITI, Random walks with memory: Different models of random 
walks with memory have been recently introduced in the literature. Some 
of them may be relevant for the description of polymerization processes. It 
is possible to give a field theoretical description of these models, leading to 
definite predictions about their asymptotic behavior. The actual results of 
simulations cannot however be understood without a proper treatment of 
the preasymptotic region. 

L. PIETRONERO, Fractal dimension of dielectric breakdown: It is 
shown that the simplest nontrivial stochastic model for dielectric 
breakdown naturally leads to fractal structures for the discharge pattern. 
The model is based on the Laplace equation associated with a probability 
field and it gives rise to random fractals with well-defined Haudsdorff 
dimensions. The relations of this model with the diffusion-limited 
aggregation will be discussed in detail. The possibility of application to 
other stochastic phenomena like fracture propagation is proposed. 

R. RAMMAL, C. TANNOUS, A.-M. S. TREMBLEY, 1If noise in 
random resistor networks: fractals and percolating systems: A general for- 
mulation for the spectral noise SR of linear resistor networks of arbitrary 
topology is given. General calculational methods, based on Tellegen's 
theorem are illustrated for one- and two-probe configurations. For self- 
similar networks, we show the existence of a new exponent b, member of a 
whole new hierarchy of exponents characterizing the size dependence of the 
normalized noise spectrum s R = SR/R 2. b is shown to lie between the fractal 
dimension d and the resistance exponent -/~L. b has been calculated for a 
large class of fractal structures: Sierpinski gaskets, X lattices, von Koch 
structures, etc. For percolating systems sR is investigated for p < Pc as well 
as for p > Pc.. In particular, an anomalous increase of the noise at p - p+ is 
obtained. A finite-size scaling function is proposed and the corresponding 
exponent b is calculated in mean field theory. 

P. RICHETTI, J. PROST, P. BAROIS, Two-dimensional aggregation 
and crystallization of a colloidal suspension of latex spheres: We present 
experiment investigations of two-dimensional crystallization of calibrated 
Brownian spheres in water. The interaction monitored by an external AC 
electric field is attractive in a wide range of frequency and leads to a 
clustering of fractal crystallites. The fractal dimension of the structure is 
measured to be D =  1.76+__0.7 in good agreement with the theory of 
dynamical clustering of clusters. Melting occurs upon increasing frequency 
and is continuous via a phase of hexatic symmetry as seen by light scat- 
tering. 
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L. M. SANDER, The grwing interface of fractal aggregates: Two 
lengths can be associated with a growing fractal: 2, the width of the region 
in which growth occurs, and 1, the penetration depth for random walkers 
incident from the outside. For diffusion-limited aggregation (DLA) they 
are identical. The exponent by which 2 scales with R, i.e., ~ R  p, is dis- 
cussed. Two hypotheses have appeared: p = ( d - D ) / 2  mean field theory), 
or p =  1 (scaling with a single diverging length). Current numerical 
evidence, due to Plishke and Racz, shows p_~0.8 for DLA, and rules out 
mean field theory. New simulation results are given for DLA in three 
dimensions in agreement with Plishke and Racz, but with some hints of 
deviations from the power law. 

B. SAPOVAL, M. ROSSO, J. F. GOUYET, Fractal nature of  a dif- 
fusion forefront: Microscopic structure obtained by two-dimensional 
atomic diffusion from a boundary with constant concentration has been 
studied by computer simulation. The diffusion frontier defined as the hull 
of the infinite cluster connected with the source boundary, exhibits a fractal 
behavior in a range which increases with diffusion depth. Our results 
accredit the simple-minded idea that the two-dimensional site percolation 
hull is the limit of the above diffusion frontier for infinite diffusion. 

H. Eug6ne STANLEY, Fractal concepts in colloids, gels and polymeric 
materials: Several new models of aggregation and gelation are described, 
and are discussed in light of recent fractal concepts. (18) Systematic 
approaches based on Monte Carlo simulation, exact enumeration, and 
renormalization group are presented, with emphasis on work by the author 
and his collaborators. (~9 31) 

How are the laws of physics modified when the underlying substrate is 
a fractal? To investigate this question, we first consider the motion of the 
de Gennes ant, which models electrical transport on a random network (as 
well as the elastic modulus of a gel). We describe evidence that the two 
exponents of the problem, d s (the fractal dimension of the aggregate) and 
dw (the fractal dimension of the walk) are possibly related for the ant by 
the dimension-independent (or "superuniversal") relation @= (2/3)dw first 
conjectured for percolation clusters by Alexander and Orbach. We 
investigate the range of validity of the Alexander-Orbach conjecture and 
find that it is remarkably large, applying to Witten-Sander aggregates/2~ 
and to Toussaint-Wilczek diffusive annihilation (26) but not to the backbone 
of a percolation c l u s t e r  (24';7'28) o r  to lattice animals/29) We present an 
argument, rigorous for the Cayley tree, that supports the Alexander- 
Orbach conjecture,(21) and we discuss "how" and "why" that argument may 
fail by about 2% in d=2.(2s! A recently proposed of model (23) of a 
correlated walk that may display analogous "superuniversal" behavior of 
superconducting network (and the viscosity of a gel); here we can relate d,, 
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to d s and also obtain a formula for the unscreened perimeter of any 
fractal. (22~ A direct connection is proposed between the "dynamic" trans- 
port properties and the "static" topological structure for branched 
polymers in any spatial dimension d. Specifically, the resistivity exponent 
is given by ~ = df/d~, where dl is the topological dimension (the number of 
sites within path length l of a given site scales as M ~  ldl). To describe the 
irreversible growth of linear polymers, we introduce a new type of 
correlated walk, related to the zero initiator concentration limit of the 
kinetic gelation model. (3~ We also describe a new geometric model 
embodying the physical mechanism of the coil--globule transition at the 
theta point of a linear polymer. We prove an exact mapping between this 
model and a self-avoiding walk with a monomer-monomer interaction 
energy e = in 2p, where p is a parameter in the model governing the relative 
strength of the two-body and three-body interactions. (31t Finally, recent 
results on fractal models of polymers are given, including extremely 
accurate calculations of the fractal dimension of self-avoiding walks, 
branched polymers, and percolation clusters for d>  2. (2~/ 

H. MARTIN, J. VANNIMENUS and J. P. NADAL, From invasion to 
Eden growth: a family of models for cluster growth in a random environ- 
ment: We define a family of models to describe cluster growth in random 
media... These models depend on a temperaturelike parameter and inter- 
polate continuously between the Eden model and the invasion model, 
recently introduced in the study of flow in porous media. Numerical results 
are presented in two dimensions, for a version of these models where 
growth is biased in a given direction. Directed invasion clusters are fractal, 
with the same exponents as directed percolation clusters, but for the other 
cases studied the clusters are compact. They remain compact even when a 
"trapping" rule prevents internal holes from being filled. 

D. A. WEITZ, The aggregation of agueous colloids: Relationship 
between dynamics and structure: The clusters formed by the diffusion- 
limited, kinetic aggregation of aqueous gold colloids exhibit dilation sym- 
metry. Their fractal dimension is d=  1.75, in excellent agreement with the 
value of 1.8 obtained from computer simulations of the cluster-cluster 
model. In this talk, we discuss measurements of the dynamics of the 
aggregation and the evolution of the cluster size distribution. These also 
compare favorably with the results obtained from computer simulations of 
the cluster-cluster model. We also discuss experiments aimed at determin- 
ing the generality of these results. We have varied the nature of the short- 
range interactions between the individual colloid particles from the purely 
attractive one, which gives d~= 1.75, to one which has a small ( ~ k T )  
repulsive barrier that must be overcome before the clusters stick. We find 
that this causes substantially different aggregation dynamics, qualitatively 
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different forms of the cluster size distribution, and an apparent but small 
increase in the fractal dimension. This behavior appears to account for the 
variation in the experimental values for d o reported in the literature, and 
possible approaches to be taken in modeling these results will be discussed. 
The goal of this work is to determine how the short-range interactions 
between the particles effect the long-range structure. 

Y. A. WITTEN, The role of randomness in diffusive growth: I discuss 
the role of random noise in growth models like dendritic crystal growth, 
viscous fingering, and diffusion-limited aggregation. The time development 
of all these systems is governed by a field that satisfies Laplace's equation. I 
report on Yacov Kantor's, Robin Ball's, and my work on a series of models 
which share this property, but which differ in the role played by random 
noise. The differences in the spatial scaling properties of these models give 
information about what features of the noise are relevant to large-scale 
structure. 
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